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Abstract

The interactions among multiple parallel microcracks in an elastic body are examined asymptotically in an explicit

and quantitative manner in order to reveal fully their so-called shielding and magni®cation e�ects on the overall
moduli of the body. Based upon this asymptotic analysis, analytical upper and lower bounds are proposed for the
overall moduli of bodies containing randomly distributed multiple parallel unbridged/bridged microcracks. The

bounds are used to assess the accuracy of the approximate methods Ðthe dilute distribution approximation, the
di�erential scheme and the self-consistent model Ð that are commonly used to determine the overall moduli of
bodies containing multiple microcracks. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Asymptotic bounds; Cracked bodies; Overall moduli; Crack shielding; Crack ampli®cation; Multiple cracks; Crack

interaction

1. Introduction

The ®rst and foremost sign of tensile damage in ®bre-reinforced brittle matrices, such as ceramics and
cements, is the appearance of multiple parallel microcracks. They cause the stress±strain curve to deviate
from linearity, i.e. give the composite a strain-hardening response. Bridging of the multiple microcracks
by short ®bres is an important mechanism for increasing the toughness of these composites and for
preventing a sudden loss of their overall sti�ness when the microcracks coalesce and localise into large
bands. The prediction of the e�ective elastic and fracture properties of a medium containing multiple
cracks has, therefore, received considerable attention. Among the studies are the solutions based upon
the non-interacting approximation, when the interaction among the cracks is neglected. Under this
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assumption, the e�ective elastic properties can be expressed in explicit forms. According to Kachanov
(1992), the non-interacting solution is the only non-controversial approximation to the problem.

The interactions among multiple cracks complicate the prediction of the overall moduli. The schemes
based upon indirect considerations of crack interactions, such as the self-consistent method and the
di�erential scheme may considerably underestimate the overall moduli, as has been pointed out by
Kachanov (1992) and Ju and Chen (1994).

When attempting to predict the overall moduli of bodies containing multiple microcracks, one is faced
with many major di�culties. Firstly, one is faced with the question as to whether the interactions
increase or decrease the overall moduli compared with the results obtained neglecting the interactions.
Secondly, although various methods have been proposed to predict the overall moduli of bodies
containing multiple microcracks, the accuracy of these methods cannot be judged due to a lack of
proper bounds. Thirdly, as pointed out by Kachanov (1992), no non-trivial upper or lower bounds can
be found that are valid for any particular sample of a given crack statistics. It should be noted that Wu
and Chudnovsky (1990) proposed upper and lower bounds for the overall Young modulus of bodies
containing multiple parallel cracks at very high crack density. Their bounds were obtained based upon a
simple beam model and the omission of interactions among the crack rows. Kachanov (1992) also
pointed out some questionable published results on the bounds of overall moduli of cracked bodies.

In the present paper, we attempt to obtain the upper and lower bounds on the overall moduli of
elastic bodies containing multiple parallel random microcracks in the two-dimensional approximation.
For this, we examine the so-called ``shielding'' and ``magni®cation'' interaction e�ects among the
multiple cracks (Kachanov, 1992). It is found that the crack interactions under unidirectional tension
and in-plane shear have opposite e�ects on the overall moduli. Through this examination of interaction
e�ects and an asymptotic analysis (Wang et al., 1999), the upper and lower bounds on the Young and
in-plane shear moduli are obtained in concise explicit forms for both unbridged and bridged cracks as
functions of the conventional crack density parameter. For unbridged cracks, the bounds are compared
with the dilute distribution solution, the di�erential scheme and the self-consistent model for a
quantitative assessment of these approximate methods as they are applied to the evaluation of the
overall moduli of bodies containing multiple parallel microcracks. For bridged cracks, the results reveal
the competing e�ects of crack interactions and the bridging force on the overall moduli of cracked
bodies. Although only the two-dimensional problem is considered in this paper, the principle is believed
to be equally applicable to the three-dimensional case.

2. General formulae and crack interactions

2.1. General formulae

The overall (average) strain and stress of a cracked body are related via (e.g. Kachanov, 1992)

eij � C 0
ijklskl �

1

2V

XN �
SN

ÿ�ui �nj � �uj �ni� dSN �1�

where skl and eij are the average stress and strain components, respectively. ui and ni are the total crack
opening/sliding displacement (COD/CSD) and the component of the unit vector normal to the crack
faces. C 0

ijkl is the compliance tensor of the uncracked material. N and SN denote the number of a crack
and the area of its faces. For parallel ¯at cracks when ni is a constant, Eq. (1) can be rewritten as
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eij � C 0
ijklskl �

1

2V

XN ÿ� �ui �nj � � �uj
�
ni
�
SN �2�

where � �ui � is the average COD/CSD for a single crack over its faces.
The average COD/CSD � �ui � can be expressed through a second-order tensor Bij

� �ui � � Bijtj �3�
where tj is a uniform traction applied on the crack faces. Eq. (3) is only valid when the opening/sliding
traction on the crack faces is a constant. For an isotropic material, the second-order tensor Bij can be
easily obtained. We now return to the determination of the traction tj:

For an isolated frictionless crack in an in®nite body under a far-®eld stress s0ij, � �ui � can be expressed
as follows

� �ui � � Bils0lknk �4�
For a body containing multiple cracks, the e�ect of crack interactions and of any bridging tractions
must be taken into account in the calculation of the COD/CSD. Using the pseudo-traction formalism,
the average COD/CSD is solely determined by the pseudo-traction, i.e.,

� �ui � � Bils
p
lknk �5�

where we assume that the pseudo-traction sp
lk is a constant on the crack faces and is given by

sp
ij � Tijkls0kl �6�

Tijkl is a fourth-order transformation tensor relating the crack opening/sliding stress to the applied
stress. It is equivalent to the interaction matrix Lij in the work of Kachanov (1987).

Thus, we can express the average COD/CSD � �ui � in the following form

� �ui � � BilTlkmns0mnnk �7�
For a body containing multiple parallel microcracks under prescribed stress boundary conditions, the
average stress sij in Eq. (1) is equal to s0ij of Eq. (7) (Horii and Nemat-Nasser, 1985; Karihaloo et al.,
1996). Substitution of Eq. (7) into Eq. (2) yields

eij � C 0
ijkls

0
kl �

1

2V

XN ÿ
BilTlkmns0mnnknj � BjlTlkmns0mnnkni

�
SN �8�

which can be rewritten as

eij �
�
C 0

ijkl � DCijkl

�
s0kl �9�

where

DCijkl � 1

2V

XN ÿ
BipTpqmnImnklnqnj � BjpTpqmnImnlknqni

�
SN �10�

Imnkl is the symmetric fourth-order unit tensor.
Within the formalism of pseudo-tractions, the COD/CSD �ui� is calculated by applying a pseudo-

traction on the faces of a single crack or a row of collinear cracks in an in®nite medium. Thus, the
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tensor Bij in Eq. (3) is determined only by the elastic properties of the medium under consideration. On
the other hand, the transformation tensor Tijkl is related to the interaction among the cracks. Therefore,
if the con®guration of the parallel microcracks, but not their density, is such that the magnitude of the
transformation tensor Tijkl, or at least the magnitude of some of its major components, is maximised,
then the interaction among the cracks will create the maximum increase in DCijkl and thus the maximum
decrease in the overall moduli of the cracked body. On the other hand, if the con®guration is such that
Tijkl is minimised, then the minimum decrease in the overall moduli can be expected. These two extreme
cases would correspond to the strongest ``magni®cation'' and the strongest ``shielding'' interaction e�ects
in the terminology introduced by Kachanov (1992). The e�ect of a natural con®guration of multiple
cracks on the overall moduli of a cracked body should be between these two extreme e�ects. In the
sequel, we shall seek to estimate these extreme interaction e�ects among the multiple microcracks.

2.2. Crack interactions

For two-dimensional parallel cracks, we need to evaluate collinear and stacked interactions (Wang et
al., 1999). A previous study (Wang et al., 1999) of a doubly periodic array of cracks showed that the
stacked interaction has a signi®cant in¯uence on the magnitude of the pseudo-traction on the crack
faces and thus on the overall moduli of the cracked body. The collinear e�ect has been previously
investigated by Kachanov (1987). In this paper, we will use the model shown in Fig. 1 to investigate the
interactions among multiple parallel microcracks in an isotropic medium.

Let us suppose that the body contains a row of collinear cracks represented by the solid lines and that
a new group of cracks will emerge in the area adjacent to these represented by the broken lines. The
location of one of the newly-emerged cracks is represented by the line segment AB. We assume further
that the newly-emerged crack is of the same size as the existing cracks. Let us now examine the
interaction among the existing collinear cracks and the newly-emerged cracks. For this, we neglect the
mutual collinear interactions among the new cracks but concentrate on the interaction among the
existing collinear cracks and a single representative new crack, namely, crack AB.

Let the body be subjected to a far-®eld stress s0ij, so that the opening/sliding stress pAB
ij �x, H � at the

potential location of crack AB, which has to be annulled, can be expressed as

pAB
ij �x, H� � T 0ijkl�x, H�s0kl �11�

where the components of T 0ijkl�x, H � represent the stress components sij�x, H � induced at the point (x,
H ) when the body containing the collinear cracks is subjected to a unit far-®eld stress. Here, for
simplicity of analysis, we shall ignore the multiple re¯ection e�ects of the crack AB and the collinear
cracks. Taking the average of pAB

ij �x, H � over the crack length 2a, we get

Fig. 1. Interacting cracks. Solid lines represent existing cracks, and dashed lines represent emerging cracks.
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D
pAB
ij �x c, H�

E
� Tijkl�x c, H�s0kl �12�

where x c is the x-coordinate of the centre of the crack AB, and

Tijkl�x c, H� � 1

2a

�x c�a

x cÿa
T 0ijkl�x, H� dx �13�

Let us now examine the variations of Tijkl�x c, H � in order to characterise the crack interactions. Firstly,
let the body be subjected to s022 6�0 or s012 6�0: Under these loading conditions, we only study the non-
trivial components T1222�x c, H �, T2222�x c, H �, T2212�x c, H � and T1212�x c, H �: As T 0ijkl�x, H � can be
obtained in closed forms from the formulae in the handbook by Tada et al. (1973), Tijkl�x c, H � can be
easily calculated. The variations of these components with the normalised crack spacings W/a and H/a
are shown in Figs. 2 and 3 for W=a � 3:0 and W=a � 2:2, respectively.

It is seen from Figs. 2 and 3 that coupling components T1222 and T2212 are much smaller than the
principal components T1212 and T2222: Thus, we shall not discuss the coupling terms, but concentrate

Fig. 2. Variations of T 0ijkl�x=a, H=a� and Tijkl�x c=a, H=a� for interacting cracks for W=a � 3:0:
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only on the principal terms. T 02222 and T2222 attain their respective maxima at x �W=2 and x c �W=2:
Due to symmetry of the problem, T 01212�x, H � and T 02222�x, H � must attain local extrema at x �W=2:
When W/a is large, these extrema are likely to be their local minima because the stress concentrations
shift to the areas around the crack tips. However, for the two cases considered in Figs. 2 and 3, the
extrema of T 02222 turn out to be its maxima. The maximum of T 01212 is at x � 0, except for W=a � 2:2
and H=a � 0:5 when it appears to be shifted. Even then, the maximum value of T 01212 is only marginally
larger than its value at x � 0: Nevertheless, for W=a � 2:2 and H=a � 0:5, the maximum of T2222 is still
at x �W=2: From the above observations we can conclude that under unidirectional tension, the crack
AB will experience the strongest shielding e�ect when it is situated immediately above one of the
existing collinear cracks and that it will experience the strongest magni®cation e�ect when it straddles
two existing collinear cracks below it. The interaction e�ects under in-plane shear loading are the
opposite. We note that when H/a is very small, the transformation tensor may exhibit di�erent
variations. However, it is seen that as H/a is very small both T 01212 and T 02222 tend to zero in the area
close to the crack faces. Thus, it is unlikely that new cracks will appear in these areas of signi®cant

Fig. 3. Variations of T 0ijkl�x=a, H=a� and Tijkl�x c=a, H=a� for interacting cracks for W=a � 2:2 in Fig. 1.
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stress relaxation. On the other hand, new cracks may appear in-between two existing collinear cracks.
This simply reduces W/a, which does not alter the above conclusions.

3. Periodic arrays of cracks and asymptotic analysis

It follows from the above observations that, if multiple cracks in a body are so arranged that every
crack is subjected to the strongest shielding e�ect from the remaining cracks, the crack interactions will
cause the least reduction in the overall moduli of the body. Conversely, if the cracks are so arranged
that every crack is subjected to the strongest magni®cation e�ect from the remaining cracks, the crack
interactions will cause the most reduction in the overall moduli of the body. The real situation will lie
somewhere between these two extremes. Based upon the study of the crack interactions in Section 2.2,
the two extreme crack arrangements are found to be the periodic rectangular array of cracks and the
diamond-shaped array of cracks, shown in Fig. 4. These two types of arrays of unbridged cracks have
been previously studied by Karihaloo (1978) in the context of elastoplastic fracture mechanics.

From the analysis of the crack interactions in Section 2.2 under unidirectional tension perpendicular
to the cracks, the cracks in the doubly periodic rectangular array will experience the strongest shielding
e�ect, and those in the diamond-shaped array will experience the strongest magni®cation e�ect. On the
other hand, under in-plane shear, the cracks in the former will experience the strongest magni®cation
e�ect, and those in the latter will experience the strongest shielding e�ect.

In order to calculate the overall moduli, or DCijkl in Eq. (10), corresponding to the two arrays of
cracks, we need to calculate the transformation tensor Tijkl: As can be seen from Eq. (10), for the
prediction of the major compliance components DC2222 and DC1212, we need only to calculate T1212 and
T22222 for the two arrays. For this, we use the procedures described in the work of Karihaloo et al.
(1996), and recently of Wang et al. (1999). Karihaloo et al. (1996) solved the doubly periodic
rectangular array of unbridged/bridged cracks using a superposition procedure and the pseudo-traction
technique (Horii and Nemat-Nasser, 1985; Hu et al., 1994). Wang et al. (1999) obtained an explicit
expression for the overall Young modulus for a body containing a doubly periodic rectangular array of
unbridged/bridged cracks using an asymptotic analysis. Here, we solve the two arrays of cracks in Fig. 4
following the procedures in the two papers by Karihaloo et al. (1996) and Wang et al. (1999). We
consider ®rst arrays of unbridged cracks and then of bridged cracks.

Following the procedure of Karihaloo et al. (1996), the traction consistency condition on each crack
in either of the two arrays shown in Fig. 4 can be written as

sp
ij�x� ÿ 2

X�1
j�1

�a
0

Kijkl

ÿ
x, x j

�
sp
kl
�x j � dx j � pij�x� � s0ij x 2 �0, a� �14�

where sp
ij�x� is the pseudo-traction on the crack faces, pij�x� is the bridging stress, and s0ij is the applied

stress. The meanings of x and x j are indicated in the papers by Karihaloo et al. (1996) and Karihaloo

Fig. 4. Doubly periodic rectangular array of cracks (a) and diamond-shaped array of cracks (b) that exhibit the strongest shielding

and magni®cation e�ects, respectively.
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and Wang (1997). Following Horii and Nemat-Nasser (1985) and Karihaloo et al. (1996), the stress s0ij is
regarded as a homogeneous stress in the same body if all the cracks were absent. Due to symmetry, the
pseudo-traction is the same on all cracks in each array. The second term in the left-hand side of Eq. (14)
represents the interaction among all the cracks. Kijkl are equivalent in form and e�ect to T 0ijkl: Thus, we
can also neglect the coupling terms and consider only the principal terms K2222 and K1212: The
expression for K2222�x, x j � was given by Karihaloo and Wang (1997)

K2222

ÿ
x, x j

�
� 2

W
Re

8><>: cos
ÿ
px j=W

� ��������������������������������������������������������������
�sin�pa=W��2ÿÿsin

ÿ
px j=W

��2q
h
�sin�pz=W��2ÿÿsin

ÿ
px j=W

��2i �����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W�� 2

q
9>=>;

ÿ 2y

W
Im

8>><>>:
cos
ÿ
px j=W

� ��������������������������������������������������������������
�sin�pa=W��2ÿÿsin

ÿ
px j=W

�� 2q
h
�sin�pz=W��2ÿÿsin

ÿ
px j=W

��2i 2�
1ÿ �sin�pa=W�=sin�pz=W��2

�

�

2642 p
W

sin
pz
W

cos
pz
W

�����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W�� 2

q

� p
W

�sin�pa=W�� 2cos�pz=W�
h
�sin�pz=W��2ÿ

ÿ
sin
ÿ
px j=W

��2i
�sin�pz=W��3

�����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W��2

q
375
9>>=>>; �15�

where z � x� iy � x� i�jH � �i � �������ÿ1p
, j � 1, 2, . . . ,�1). K1212�x, x j � is also easily obtained using the

formulae in the handbook by Tada et al. (1973)

K1212

ÿ
x, x j

�
� 1

W
Re

8><>: cos
ÿ
px j=W

� ��������������������������������������������������������������
�sin�pa=W��2ÿÿsin

ÿ
px j=W

��2q
h
�sin�pz=W��2ÿÿsin

ÿ
px j=W

��2i �����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W�� 2

q
9>=>;

ÿ y

W
Im

8>><>>:
cos
ÿ
px j=W

� ��������������������������������������������������������������
�sin�pa=W�� 2ÿÿsin

ÿ
px j=W

��2q
h
�sin�pz=W��2ÿÿsin

ÿ
px j=W

��2i2�
1ÿ �sin�pa=W�=sin�pz=W�� 2

�

�

2642 p
W

sin
pz
W

cos
pz
W

�����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W�� 2

q

� p
W

�sin�pa=W�� 2cos�pz=W�
h
�sin�pz=W��2ÿ

ÿ
sin
ÿ
px j=W

��2i
�sin�pz=W��3

�����������������������������������������������������������
1ÿ �sin�pa=W�=sin�pz=W��2

q
375
9>>=>>; �16�

For a given loading condition, the integral equation (14) can be easily and accurately solved using
Gauss±Legendre quadrature. After solving sp

ij�x� from Eq. (14), the stress intensity factor and the COD/
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CSD can be easily calculated numerically, as can the overall moduli of the cracked body (Karihaloo et
al., 1996).

As in the work of Wang et al. (1999), we aim to obtain an approximate closed-form solution of the
integral equation (14) for the two arrays in Fig. 4. To this end, we assume that the cracks are so
distributed that the higher-order terms (in comparison with terms of order 1) containing
eÿ1�H=W �p �1r4j �, eÿn�H=W �psinm�pa=W � and eÿn�H=W �psinm�px=W � �nr2j and mr2� either singly or in
any combination in K2222 and K1212 in Eqs. (15) and (16) can be neglected. Throughout this paper, the
term ``asymptotic'' is used to emphasise this assumption, and the phrase ``asymptotic analysis'' is used
for the approximate analytical procedure and results obtained on the basis of this assumption. The
asymptotic expressions for K2222�x, x j � and K1212�x, x j � for the two arrays of Fig. 4 are

8>>>>>><>>>>>>:

K r
2222

ÿ
x, x j

�
K d

2222

ÿ
x, x j

�
K r

1212

ÿ
x, x j

�
K d

1212

ÿ
x, x j

�

9>>>>>>=>>>>>>;
�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ÿ2
�
1� 2j

H

W
p

�
2

�
1� 2j

H

W
p

�
ÿ
�
1ÿ 2j

H

W
p

�
�
1ÿ 2j

H

W
p

�

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

4

W
eÿ2j�H=W�pcos

px j

W

��������������������������������������
sin2pa

W
ÿ sin2px

j

W

r
�17�

where the superscripts r and d refer to the rectangular and diamond-shaped array, respectively.
Substituting Eq. (17) into Eq. (14) gives

sp
22�x� ÿ 2

X�1
j�1

�a
0

8<:K r
2222

ÿ
x, x j

�
K d

2222

ÿ
x, x j

�
9=;sp

22
�x j � dx j � p22�x� � s022 �18�

sp
12�x� ÿ 4

X�1
j�1

�a
0

8<:K r
1212

ÿ
x, x j

�
K d

1212

ÿ
x, x j

�
9=;sp

12
�x j � dx j � p12�x� � s012 �19�

For unbridged cracks, i.e. p22�x� � 0 and p12�x� � 0, Eqs. (18) and (19) reduce to

sp
22�x� ÿ 2

X�1
j�1

�a
0

8<:K r
2222

ÿ
x, x j

�
K d

2222

ÿ
x, x j

�
9=;sp

22
�x j � dx j � s022 �20�

sp
12�x� ÿ 4

X�1
j�1

�a
0

8<:K r
1212

ÿ
x, x j

�
K d

1212

ÿ
x, x j

�
9=;sp

12
�x j � dx j � s012 �21�

As the kernels K r
2222�x, x j �, K d

2222�x, x j �, K r
1212�x, x j � and K d

1212�x, x j � in the Eqs. (20) and (21) do
not contain the variable x, the pseudo-tractions sp

22�x� and sp
12�x� which satisfy these equations must be

independent of x, that is, they must be constant on the crack faces. Thus, sp
22�x� and sp

12�x� are given by
(after carrying out the indicated integrations and summations)
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(
spr
22

spd
22

)
�
�
ar

ad

�
s022 �22�

(
spr
12

spd
12

)
�
�
br

bd

�
s012 �23�

where

ar � 1

1� 4sin 2�pa=W� eÿ2�H=W�p
�
1� 2�H=W�p� �24�

ad � 1

1ÿ 4sin2�pa=W� eÿ2�H=W�p�1� 2�H=W�p� �25�

br � 1

1� 4sin2�pa=W� eÿ2�H=W�p�1ÿ 2�H=W�p� �26�

bd � 1

1ÿ 4sin2�pa=W� eÿ2�H=W�p
�
1ÿ 2�H=W�p� �27�

On the other hand, when the cracks are bridged, various bridging laws can be chosen in the numerical
solution of Eq. (14). In the present study, we choose the simple linear bridging laws as follows

p22�x� � k22�u2 ��x�, p12�x� � k12�u1 ��x� �28�

where k22 and k12 are the bridging sti�nesses, and �u2��x� and �u1��x� are the COD and CSD. Such linear
bridging laws occur, for example, when the material is reinforced with short ®bres (Nemat-Nasser and
Hori, 1987; Karihaloo et al., 1996).

Following the solution for the unbridged case, we assume constant pseudo-tractions sp
22�x� � sp

22 and
sp
12�x� � sp

12 over the crack faces. Substituting the constant pseudo-tractions into Eqs. (18) and (19)
reduces the left-hand sides of these equations to8>><>>:

1

ar

1

ad

9>>=>>;sp
22 � k22�u2 ��x� �29�

8>>><>>>:
1

br

1

bd

9>>>=>>>;s
p
12 � k12�u1 ��x� �30�

It is evident that the traction consistency conditions (18) and (19) cannot be satis®ed, because the
expressions (29) and (30) are functions of x, whereas the right-hand sides of Eqs. (18) and (19) are
constants, namely, s022 and s012: For this reason, we approximate these traction consistency conditions in
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an average sense as follows

1

2a

��a
ÿa

2664
8>><>>:

1

ar

1

ad

9>>=>>;sp
22 � k22�u2 ��x�

3775 dx � s022 �31�

1

2a

��a
ÿa

26664
8>>><>>>:

1

br

1

bd

9>>>=>>>;s
p
12 � k12�u1 ��x�

37775 dx � s012 �32�

The integrals
��a
ÿa �u2��x� dx and

��a
ÿa �u1��x� dx for a single crack in a periodic collinear crack array

subjected to constant surface tractions can be found in the work by Deng and Nemat-Nasser (1992),
whence Eqs. (31) and (32) yield(

spr
22

spd
22

)
�
�
zr

zd

�
s022 �33�

where(
spr
12

spd
12

)
�
�
Zr

Zd

�
s012 �34�

zr �
(
1ÿ 4sin2pa

W
eÿ2�H=W�p

�
1� 2

H

W
p

�
ÿ 2k22W

2

paE 0
ln

�
cos

pa
W

�)ÿ1
�35�

zd �
(
1ÿ 4sin2pa

W
eÿ2�H=W�p

�
1� 2

H

W
p

�
ÿ 2k22W

2

paE 0
ln

�
cos

pa
W

�)ÿ1
�36�

Zr �
(
1� 4sin2pa

W
eÿ2�H=W�p

�
1ÿ 2

H

W
p

�
ÿ 2k12W

2

paE 0
ln

�
cos

pa
W

�)ÿ1
�37�

Zd �
(
1ÿ 4sin2pa

W
eÿ2�H=W�p

�
1ÿ 2

H

W
p

�
ÿ 2k12W

2

paE 0
ln

�
cos

pa
W

�)ÿ1
�38�

E 0 � E for plane-stress, and E 0 � E=�1ÿ n2� for plane-strain deformation. Expressions (35)±(38) reduce
to Eqs. (24)±(27) in a natural way when k22 � k12 � 0: Thus, we shall use expressions (35)±(38) for both
unbridged and bridged cases, with the constant pseudo-tractions on the crack faces given by (33)±(34).

We obtained above the pseudo-tractions on the crack faces from the asymptotic analysis. They are
found to be constants (in an average sense only for bridged cracks) and dependent upon the geometry
of the crack arrays. Wang et al. (1999) presented the solution for the doubly periodic rectangular array
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of cracks under unidirectional tension, i.e. the result in Eqs. (24) and (35). They compared the overall
Young modulus calculated using this pseudo-traction and that obtained from an accurate numerical
solution of the integral equation. It was found that the asymptotic solution gave results of good
accuracy for unbridged cracks at low to moderate levels of conventional crack density �a2=�WH � �
0±0:25� and relative crack length (2a/W=0±0.4). The accuracy for bridged cracks was even better. Thus,
con®dence can be placed on the above asymptotic solutions for low to moderate levels of conventional
crack density and relative crack length.

In the formalism of the pseudo-traction technique, the COD/CSD, as will be seen below, is
determined by the pseudo-traction only. An examination of Eq. (6) in Section 2.1 and Eqs. (33) and (34)
shows that

T r
2222 � zr, T d

2222 � zd; T r
1212 �

1

2
Zr, T d

1212 �
1

2
Zd �39�

where, again, the superscripts r and d refer to the rectangular and diamond-shaped array, respectively.
Other components of Tijkl are trivial and are neglected.

It is seen from Eq. (7) that the average COD/CSD is directly proportional to Tijkl, as is the increment
DCijkl in Eq. (10). Thus, for a given crack density, the e�ect of the crack interactions on the overall
moduli of the cracked body will be dependent on the values of Tijkl: For the two crack con®gurations of
Fig. 4, it is seen that the values of T r

2222 � zr and T d
2222 � zd are di�erent. It was argued in the

beginning of this section that under unidirectional tension, the rectangular array will have the strongest
shielding e�ect and diamond-shaped will have the strongest magni®cation e�ect. This argument is fully
supported by the results of the above asymptotic analysis. For unbridged cracks, the value of T r

2222 � zr

is always less than 1. The second term in the curly brackets in Eq. (35), which is always positive, will
therefore always result in a reduction of the pseudo-traction, and thus a reduction of the average COD.
In contrast to T r

2222, T
d
2222 � zd is always greater than 1 due to the crack interactions, so that the COD

will increase. The magni®cation e�ect may become very signi®cant for small values of H/W and large
values of a/W. It is tempting to examine the case when T d

2222 � zd tends to in®nity, as 1ÿ
4sin2�pa=W �eÿ2�H=W �p�1� 2�H=W �p� vanishes. In this case, if we assume that sin 2�pa=W � � 1, i.e.
a=W � 1=2, then 1ÿ 4sin2�pa=W �eÿ2�H=W �p�1� 2�H=W �p� � 0 would give H=W � 0:428: Accordingly,
the conventional crack density parameter a2=�WH � would work out to be 0.58. This level of crack
density is probably beyond the range of applicability of the current asymptotic analysis, and also
probably beyond the range of applicability of any existing analytical method. Kachanov (1992)
remarked that for the two-dimensional case, the densities in the range 0.25±0.35 could be regarded as
very high. On the other hand, under in-plane shear loading, as was to be expected, the value of
2T r

1212 � Zr is greater than 1, and that of 2T d
1212 � Zd is less than 1. These results are valid, provided

H=W > 1=�2p�: A con®guration where H=W < 1=�2p�, which is probably beyond the range of
applicability of the asymptotic analysis, is unlikely to occur in reality. Thus, the argument that under in-
plane shear loading, the rectangular array has strongest magni®cation crack interaction and the
diamond-shaped array has the strongest shielding crack interaction is con®rmed by the asymptotic
analysis. For all the loading conditions and crack arrays, the crack bridging simply reduces the pseudo-
tractions and thus prevents the degradation of the overall moduli of the cracked body.

4. Overall moduli and bounds

After calculating T2222 and T1212 from Eq. (39), we can calculate the values of DC2222 and DC1212

using Eq. (10). For this, we also need Bij which relates the pseudo-traction to the average COD/CSD
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� �ui �: For an isotropic material, Bij is proportional to a unit tensor. The o�-diagonal components
representing normal-shear coupling are zero (Kachanov, 1992). For the cases in the present paper, we
need B11 and B22 for an array of periodic collinear cracks subjected to uniform pseudo-tractions given
by Eqs. (33) and (34), respectively. These can be found in the work by Deng and Nemat-Nasser (1992),
namely,

B11 � B22 � ÿ2W 2

paE 0
ln

�
cos

pa
W

�
�40�

which reduce to B11 � B22 � paE 0 for a single crack in an in®nite body (Kachanov, 1992) when a/W
approaches zero.

Substituting Eqs. (39) and (40) into Eq. (9), and after some manipulations, we get

E 0

E 022
� 1ÿ 4W

pH
ln

�
cos

pa
W

��
zr

zd

�
�41�

m
m12
� 1ÿ 2W

pH�1� n� ln
�

cos
pa
W

��
Zr

Zd

�
�42�

where m12 is the overall shear modulus of the cracked body in the xy-plane (Fig. 4). n is the Poisson
ratio of the uncracked isotropic body. If the cracked body in Fig. 4 is in a plane-stress state of
deformation, E 022 is simply the Young modulus of the material in the direction perpendicular to the
crack faces, whence E 0 � E for an isotropic medium. In this paper, for the purpose of seeking the
overall Young modulus E22, we simply consider the plane-stress state of deformation. Therefore, we get
the following upper and lower bounds on the normalised overall Young and in-plane shear moduli:�

E22

E

�U

�
�
1ÿ zr 4W

pH
ln

�
cos

pa
W

��ÿ1
�43�

�
E22

E

�L

�
�
1ÿ zd 4W

pH
ln

�
cos

pa
W

��ÿ1
�44�

�
m12
m

�U

�
�
1ÿ Zd 2W

pH�1� n� ln
�

cos
pa
W

��ÿ1
�45�

�
m12
m

�L

�
�
1ÿ Zr 2W

pH�1� n� ln
�

cos
pa
W

��ÿ1
�46�

where the superscripts U and L refer to the upper and lower bounds, respectively.
For bridged cracks, we introduce two non-dimensional parameters

A � 2k22a

pE
, B � 2k12a

pE
�47�

where the former was introduced by Wang et al. (1999). Thus, the parameters in Eqs. (35)±(38) are
rewritten as
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zr �
(
1� 4sin2pa

W
eÿ2�H=W�p

�
1� 2

H

W
p

�
ÿA

�
a

W

�2

ln

�
cos

pa
W

�)ÿ1
�48�

zd �
(
1ÿ 4sin2pa

W
eÿ2�H=W�p

�
1� 2

H

W
p

�
ÿA

�
a

W

�2

ln

�
cos

pa
W

�)ÿ1
�49�

Zr �
(
1� 4sin2pa

W
eÿ2�H=W�p

�
1ÿ 2

H

W
p

�
ÿB

�
a

W

�2

ln

�
cos

pa
W

�)ÿ1
�50�

Zd �
(
1ÿ 4sin2pa

W
eÿ2�H=W�p

�
1ÿ 2

H

W
p

�
ÿB

�
a

W

�2

ln

�
cos

pa
W

�)ÿ1
�51�

The values of A and B depend on the material, that is, the matrix for a ®bre-reinforced composite
material, and on the bridging mechanism. Their magnitudes can be quite di�erent, say, for short ®bre-
reinforced cementitious composite materials (Karihaloo et al., 1996) and short ®bre-reinforced ceramic
composite materials (Nemat-Nasser and Hori, 1987). In the following, we consider two cases with A �
B � 0:05 and 0.50, respectively.

5. Results and discussion

In Fig. 5(a) and (b), the asymptotic bounds for unbridged cracks are compared with the overall
moduli predicted by the dilute distribution solution (Deng and Nemat-Nasser, 1992), the di�erential
scheme and the self-consistent method for H=W � 0:5 and 1.0, respectively. For the last two methods,
the procedures described in the above paper are used. For large values of H/W, a large value of
a2=�WH � will correspond to a very large a/W. For example, the con®guration where H=W � 1:0 and
a2=�WH � � 0:20 corresponds to a=W � 0:445, which means the neighbouring tips of two collinear
cracks are nearly touching each other. In all calculations, n � 0:3 is used in Eqs. (45) and (46).

Fig. 5(a) and (b) reveal several features of the overall moduli. Firstly, the bounds on the normalised
overall in-plane shear modulus m12=m are much closer than those on the overall normalised Young
modulus E22=E for the shown values of H/W and the crack density. Secondly, as expected and also
widely reported in the literature, the di�erential scheme and the self-consistent method tend to give
considerably low values of the overall moduli of cracked bodies, especially for large crack densities.
Thus, for the rectangular and diamond-shaped arrays of cracks, the current results give a quantitative
assessment of these two methods with regard to their accuracy. In Fig. 5(a) where H=W � 0:5, the
results from the di�erential scheme appear to correspond to the lower bounds on E22=E and m12=m: In
Fig. 5(b) where H=W � 1:0, which means weaker crack interactions, the di�erential scheme produces
values of the overall moduli that are much smaller than even the lower bounds. On the other hand, the
self-consistent method always predicts very low values of the overall moduli.

The dilute distribution solutions shown in Fig. 5(a) and (b) are obtained by neglecting the interactions
among the crack rows, that is, by setting zr � zd � Zr � Zd � 1: Kachanov (1992) conducted a
computational experiment on randomly distributed discrete parallel cracks and found that the result is
very close to the approximation of non-interacting cracks. The current analytical results suggest that the
overall moduli calculated for a row of collinear interacting cracks could be a good approximation to the
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actual values for randomly distributed parallel cracks for they lie in the middle of the area enclosed by
the upper and lower bounds. In Fig. 5(b), the bounds and the dilute distribution solution almost merge,
indicating that when the vertical spacings between the cracks are in the order of the horizontal
distances, the e�ect of crack stacks can be neglected. In this case, the overall moduli can be accurately
predicted using a row of collinear cracks. It should, however, be noted that in the dilute distribution
solution, the collinear interactions among the cracks are still considered. In that respect, it di�ers from
the non-interacting approximation of Kachanov (1992).

Fig. 6(a) and (b) show the bounds for bridged cracks with di�erent non-dimensional bridging
sti�nesses, namely, A � B � 0:05 and A � B � 0:50, respectively. Again, the dilute distribution
solution shown in these ®gures is obtained by neglecting the interactions among the cracks rows.
However, the bridging e�ect is included in this case. For A � B � 0:05, that is, for weak bridging, the
bounds on the overall moduli exhibit the same trend as those for the unbridged cracks, although it is
noted that the bounds for the same crack con®guration are closer than those for the unbridged cracks.

Fig. 5. Comparison of the asymptotic bounds with results predicted by the dilute distribution solution, the di�erential scheme and

the self-consistent method for unbridged cracks.
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For A � B � 0:50, that is, for strong bridging, the bounds are much closer than those for the
unbridged cracks. Even for H=W � 0:25, the upper and lower bounds on the normalised shear moduli
almost merge. This shows that when the cracks are bridged, the crack interactions become less
important than those for the unbridged cracks. Under a strong bridging force, the crack opening/sliding
is greatly reduced by the bridging tractions. This can be seen from the expressions (48)±(51). For
unbridged cracks, the variation of the overall moduli is controlled by the second terms in the curly
brackets in Eqs. (48)±(51), which represent the e�ect of the crack interactions. For bridged cracks, the
e�ect of the third term comes into play. When this term dominates, the di�erence between the bounds
diminishes.

For ®bre-reinforced composite materials, it is known that the so-called strain hardening stage is
characterised by multiple parallel microcracks under unidirectional tension. In this case, the randomness
in the vertical spacing between the cracks may be greatly reduced compared with the case for monolithic
materials. This is due to the load-transferring mechanism of the ®bres. Such a phenomenon, for

Fig. 6. Asymptotic bounds on overall moduli for bridged cracks. Also shown are the results when the interactions among the crack

rows are neglected.
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example, is depicted by the well-known ACK model (Aveston et al., 1971). For unbridged and bridged
cracks, the stresses in the area adjacent to the crack faces excluding the area around the crack tips are
much less than the applied stress. The stresses increase with the distance away from a crack. Thus, the
cracks tend to form a somewhat regular pattern instead of a completely random one. It is also noted
(Kachanov, 1992) that in real bodies, multiple crack con®gurations with both shielding and
magni®cation interactions are possible. The results presented in this paper can be used to estimate the
ranges of variation of the overall moduli of bodies containing naturally distributed parallel microcracks,
which do not form regular arrays. In such cases, the geometrical parameters a, W and H have to be
interpreted in a statistical sense.
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